HMM POS Tagging
HMM and Part of Speech Tagging. Viterbi Algorithm. Limits of Sequence Labeling.
POS Tagger ToolPenn Treebank POS Tag Set
Tag
Description
Examples
Tag
Description
Examples
Coordinating conjunction 并列连词
Adverb, comparative 副词比较级
Adverb, superlative 副词最高级
Preposition or subord. 介词或从属连词
Adjective, comparative 形容词比较级
Adjective, superlative 形容词最高级
Verb, gerund form 动词现在分词 ing
Noun, singular or mass 名词单数或不可数
Proper noun, singular 专有名词单数
Proper noun, plural 专有名次复数
Possessive wh-pron. Wh-物主代词
Clause introduced by a (possibly empty) subordinating conjunction.
Examples:
[S I can't believe [SBAR that John went without me.]]
[S I can't believe [SBAR __ John went without me.]]
HMM Viterbi Algorithm
Training States
Transition Probability / Prior Probability
Trans_Prob(TagA→TagB)=Count(TagA)Count(TagB_following_TagA)
Emission Probability / Likelihood Emis_Prob(TokenA,TagA)=Count(TagA)Count(TokenA_being_TagA)
Viterbi Algorithm
Each step:
Step_Prob(TokenA,TagA)=max[Step_Prob(Last_Token,TagX)∗Trans_Prob(TagX,TagA)]∗Emis_Prob(TokenA,TagA)
Example: Fish sleep.
Transition Probability
Transition Probability for "Fish sleep." Emission Probability
Emis_Prob(fish,noun)=8+28=0.8 Emis_Prob(fish,verb)=5+55=0.5 Emis_Prob(sleep,noun)=8+22=0.2 Emis_Prob(sleep,verb)=5+55=0.5
Steps result for "Fish sleep."